inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wuping Liao and Richard Dronskowski*

Institut für Anorganische Chemie, RWTH Aachen, Professor-Pirlet-Straße 1, 52056 Aachen, Germany

Correspondence e-mail: drons@HAL9000.ac.rwth-aachen.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (N–C) = 0.005 Å R factor = 0.017 wR factor = 0.041 Data-to-parameter ratio = 12.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Colourless single crystals of β -SrNCN were grown from reactive iodide/cyanide/azide fluxes in tantalum containers and structurally characterized by X-ray diffraction. Trigonal β -SrNCN is isotypic with CaNCN and contains alternating layers of strontium cations and linear NCN²⁻ anions oriented perpendicular to the layers. The Sr cations are octahedrally coordinated by carbodiimide N atoms, with Sr-N = 2.623 (2) Å and C=N = 1.232 (5) Å. Sr, C and N atoms have site symmetries of $\overline{3}m$, $\overline{3}m$ and 3m, respectively.

β-Strontium carbodiimide

Comment

At present, two polymorphs of strontium carbodiimide have been reported and they were synthesized using markedly different routes. While single crystals of α -SrNCN were obtained from the reaction of melamine with the metal nitride (Berger & Schnick, 1994), polycrystalline β -SrNCN has been synthesized *via* ammonolysis of SrCO₃ at 923 K (Wißmann, 2001). We present here an alternative synthesis of β -SrNCN, resulting in single crystals, and its structure refinement from X-ray diffraction data.

The new route, targeted at the syntheses of various metal cyanamides/carbodiimides, is based on reactive fluxes of the metal halides, sodium cyanide and sodium azide (Liao, Hu *et al.*, 2004; Liao, von Appen & Dronskowski, 2004). Not too surprisingly, both the thermal conditions and nature of the halogen atom play a decisive role for product formation. As a precursor, SrI_2 must be used throughout, but a reaction temperature of 1153 K is needed for synthesizing α -SrNCN, whereas β -SrNCN is obtained at 1073 K. The two polymorphs are then obtained in the form of single crystals.

 β -SrNCN crystallizes in the trigonal system and is isostructural with CaNCN (Vannerberg, 1962). Thus, the essential structural feature of β -SrNCN is alternating layers of strontium cations and linear NCN²⁻ anions oriented perpendicular to the metal layers (Fig. 1). All strontium cations are located in layers parallel to the *ab* plane, separated by the NCN²⁻ anions. Similar layer structures are also observed for $Ln_2O_2(NCN)$ (Ln = Ce-Gd; Hashimoto *et al.*, 1996), but the layers in the latter compound are composed of Ln^{3+} cations and oxygen anions, resulting in a layer stoichiometry of $(Ln_2O_2)^{2+}$.

Sr, C and N atoms have site symmetries of $\bar{3}m$, $\bar{3}m$ and 3m, respectively. The strontium cation is surrounded octahedrally by six NCN²⁻ anions, with an Sr-N distance of 2.623 (2) Å (Table 1). The N-C-N bond lengths and angle [1.232 (5) Å and 180° due to space-group symmetry] are characteristic for a $D_{\infty h}$ -shaped NCN²⁻ unit containing two N=C double bonds. These linear anions are oriented parallel to the *c* axis and separate the layers of metal cations. Compared with α -SrNCN,

Received 10 September 2004 Accepted 20 September 2004 Online 30 September 2004

Printed in Great Britain – all rights reserved **i124** Liao and Dronskowski • SrCN₂

© 2004 International Union of Crystallography

Figure 1

Unit-cell packing in β -SrNCN, with displacement ellipsoids shown at the 50% probability level. Key: Sr atoms red, N atoms green and C atoms grey.

all the averaged interatomic distances are identical within experimental error, but the local symmetry of strontium (approximate octahedral coordination) is slightly lower in the orthorhombic α -phase.

Experimental

Single crystals of β -SrNCN were synthesized following a reported route (Liao, Hu *et al.*, 2004; Liao, von Appen & Dronskowski, 2004). β -SrNCN is obtained upon heating reactive fluxes of SrI₂, NaCN and NaN₃ (2:1:1 ratio) in a tantalum container to 1073 K, followed by slow cooling (6 K min⁻¹) to room temperature. An analogous procedure using the same educts but with a 1:1:1 stoichiometric ratio and a maximum temperature of 1153 K leads to the formation of α -SrNCN.

Crystal data

SrCN ₂
$M_r = 127.65$
Trigonal, R3m
a = 3.9732(5) Å
c = 15.028 (3) Å
$V = 205.45 (5) \text{ Å}^3$
Z = 3
$D_x = 3.095 \text{ Mg m}^{-3}$

Mo K α radiation Cell parameters from 893 reflections $\theta = 4.1-30.3^{\circ}$ $\mu = 19.39 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless $0.08 \times 0.06 \times 0.06 \text{ mm}$

Figure 2

The octahedral Sr atom environment in β -SrNCN. [Symmetry codes: (i) -x, -y, -z; (ii) $\frac{2}{3} - x, \frac{4}{3} - y, \frac{1}{3} - z;$ (iii) $-\frac{1}{3} - x, \frac{1}{3} - y, \frac{1}{3} - z;$ (iv) $\frac{2}{3} - x, \frac{1}{3} - y, \frac{1}{3} - z;$ (iv) $\frac{2}{3} - x, \frac{1}{3} - y, \frac{1}{3} - z;$ (iv) 1 + x, 1 + y, z; (vi) x, 1 + y, z.]

Data collection

8 parameters

97 independent reflections 97 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.069$
$\theta_{\rm max} = 30.3^{\circ}$
$h = -5 \rightarrow 5$
$k = -5 \rightarrow 5$
$l = -20 \rightarrow 21$
$w = 1/[\sigma^2(F_o^2) + (0.0153P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Table 1			
Selected	geometric parameters	(Å,	°)

Sr-N	2.623 (2)	N-C	1.232 (5)
N^{vi} -Sr-N	98.45 (11)	$C-N-Sr^{vii}$	119.02 (9)
N^{vi} -Sr-N ^{iv}	180	$Sr^{vii}-N-Sr$	98.45 (11)
N-Sr-N ^{iv}	81.55 (11)	N^i-C-N	180

Symmetry codes: (vi) x, 1 + y, z; (iv) $\frac{2}{3} - x, \frac{1}{3} - y, \frac{1}{3} - z$; (vii) x, y - 1, z; (i) -x, -y, -z.

The refinement used the atomic coordinates of CaNCN (Vannerberg, 1962) as a starting model, with Sr replacing Ca.

Data collection: *SMART* (Bruker, 1999–2001); cell refinement: *SMART*; data reduction: *SAINT–Plus* (Bruker, 1999–2001); method used to solve structure: atomic coordinates of CaNCN (Vannerberg, 1962) used; program(s) used to refine structure: *SHELXTL* (Sheldrick, 1998); molecular graphics: *ATOMS* (Dowty, 2002); software used to prepare material for publication: *SHELXTL*.

It is a pleasure to thank the Fonds der Chemischen Industrie (Frankfurt) for financial support.

References

- Berger, U. & Schnick, W. (1994). J. Alloys Compd. 206, 179-184.
- Bruker (1999–2001). SMART (Version 5.624) and SAINT-Plus (Version 6.02). Bruker AXS Inc., Madison, Wisconson, USA.
- Dowty, E. (2002). *ATOMS*. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Hashimoto, Y., Takahashi, M., Kikkawa, S. & Kanamaru, F. (1996). J. Solid State Chem. 125, 37–42.
- Liao, W., von Appen, J. & Dronskowski, R. (2004). Chem. Commun. In the press.
- Liao, W., Hu, C., Kremer, R. K. & Dronskowski, R. (2004). *Inorg. Chem.* 43, 5884–5890.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Vannerberg, N. G. (1962). Acta Chem. Scand. 16, 2263-2266.

Wißmann, B. (2001). Dissertation, Universität Tübingen, Germany.